LC振荡电路,是指用电感L、电容C组成选频网络的振荡电路,用于产生高频正弦波信号,常见的LC正弦波振荡电路有变压器反馈式LC振荡电路、电感三点式LC振荡电路和电容三点式LC振荡电路。LC振荡电路的辐射功率是和振荡频率的四次方成正比的,要让LC振荡电路向外辐射足够强的电磁波,必须提高振荡频率,并且使电路具有开放的形式。
lc振荡电路是如何起振的
我们知道电容有充放电的蓄能特性!电感则因通过电流的变化能产生自感电势!
在电路接通电源的瞬间,电容会有一个充电的浪涌电流!而这个浪涌电流会使与电容相连的电感电流也发生变化!电干因此而产生了感应电势!这个电势又反加在电容两端使它原本已结束的充电电流产生了波动!这波动又推动了电感电流的变化!如此往复下去,振荡就产生了!
这里有两个要点!一是这个振荡会因元老和电路的阻抗损耗会衰减至消失!因而称衰竭振荡!若要将振荡维持下去就必需有能量补充!这就是为何振荡电路会有放大电路相辅的道理!
二是这个振荡其频谱很宽!为使其能有一个主频率就必需有一个定频槽路!也就是选频回路!
1、LC振荡器的起振条件
1.1、振荡器的振幅条件
振荡器振幅平衡条件就是指放大器的反馈信号必须具有一定的振幅幅度。理论公式表示的是反馈系数F与放大器的电压放大倍数AV相乘的乘积大于1,也就是AvF≥1,而其中反馈系数F是一个比1小的数,由此可以得出Av的数值应当大于1。正确推断放大器是否工作于正常状态是判断振荡器是否起振的关键。放大器正常放大时,三极管的外部偏置条件必须满足发射结正向偏置、集电结反向偏置。而且判断时应当注意:研究放大状态时是分析振荡电路的直流状态,而不是交流电路状态。其中应当记住直流状态时电感线圈相当于短路,而电容则相当于断路。
1.2、振荡器的相位平衡条件
振荡器起振的第二个必须条件是应当满足相位平衡,也就是放大器的反馈信号与输入信号相位应当一样,书中公式表示了反馈信号VF的相位与输入信号VI的相位相差应当为2nπ(n是整数)。由于VI与VF相位相同,因此反馈信号能够使输入信号的作用得到增强,于电路中具体判断时就是看电路是否是正反馈,而判断电路是否构成正反馈,一般采用瞬时极性法去判别。在判断之前必须注意,分析相位是否平衡是采用电路的交流状态,不是直流状态,也即此时电感线圈于电路中不能看作短路,两端将具有一定的电压势差。
而电容则应当分两种情况加以讨论:当在LC电路中时,电容不能被认为是短路,即两端应有一定的压差,当不在LC电路中时,电容可以被看作为短路状态;在交流状态时当直流电源的内阻比较小时,可以将其看为处于短路状态。同时值得注意的是对于电感线圈串联和两个电容串联于电路中时的情况,此时当采用瞬时极性法判断时应当分两种情况予以考虑:当接地点在两串联电感或者两串联电容的一端时,另两端的极性是相同的,如图1中的A与B示;当接地点连接在两串联电感或者两串联电容的中间端时,那么两端的极性则是相反的。
2、LC振荡器的调试
振荡器电路设计好后,下一步就是电路的调试了,在这一过程中,往往会出现很多的问题,笔者将两个常见的问题归纳如下:
2.1、振荡器不起振
电路接线完成后,检查连线没有错误,静态工作点工作亦正常,但振荡器不起振。这主要是由于相位平衡条件和振幅条件没有满足导致的。
①检查相位平衡条件是否满足:对于本文介绍的LC振荡电路主要是检查电感、电容的位置排列是否合适;
②检查振幅条件是否满足: 如果静态工作点选择比较低的话,晶体管的放大倍数比较小, 从而导致电路起振条件不满足, 此时,可以将工作点适当提高;如果是反馈系数过小的话, 可适当调节反馈电路中元件参数的大小,但如果想用加强反馈耦合来处理其它因素不足而引起的矛盾,那么,这样做是不理想的,是不合适的,因为如果反馈量过大的话,有可能导致波形不好,甚至引起电路不能起振。
2.2、振荡器的波形不理想
当振荡器回路输出的波形不理想,或者偏离正弦波形很远,可适当调节反馈量使耦合得到减弱,另一方面就是根据情况使回路的品质因素得到提高,此时,应当引起注意的是静态工作点选择应当合理,振荡器正常工作之后,晶体管不应当工作于饱和区。
总之,实现一个理想的LC振荡器,既需要成熟的理论指导,同时也需要具备将理论灵活运用于实际的能力,只有将两者紧密结合,才能达到事半功倍的效果,得到比较完美的正弦波形。 |